ECE 307 - Techniques for Engineering Decisions

FINAL REVIEW

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

PROBLEM 7.27

\square We define the following notation
$\operatorname{car} A$: outcome that the car is behind door A
similar definitions for $\operatorname{car} B$ and $\operatorname{car} C$
\square Then, $P\{\operatorname{car} A\}=P\{\operatorname{car} B\}=P\{\operatorname{car} C\}=\frac{1}{3}$
which indicates that for the car to be behind any one of the 3 doors is equally likely
\square I pick door A and the host knows where the car is;

PROBLEM 7.27

\square We define the following notation $\operatorname{car} A$: outcome that the car is behind door A
\square We introduce similar definitions for $\operatorname{car} B$ and $\operatorname{car} C$
\square Then,

$$
P\{\operatorname{car} A\}=P\{\operatorname{car} B\}=P\{\operatorname{car} C\}=\frac{1}{3}
$$

which indicates that for the car to be behind any one of the 3 doors is equally likely
\square I pick door A and the host knows where the car is; the possible outcomes are:

PROBLEM 7.27

(i) car is behind door C

$$
P\{\text { host picks door } B \mid \text { car } C\}=1
$$

(ii) car is behind door \boldsymbol{A} that I picked as my choice

$$
\begin{aligned}
& P\{\text { host picks door } B \mid \text { car } A\}= \\
& P\{\text { host picks door } C \mid \text { car } A\}=\frac{1}{2}
\end{aligned}
$$

(iii) car is behind door B

$$
\boldsymbol{P}\{\text { host picks door } B \mid \text { car } B\}=0
$$

PROBLEM 7.27

\square Now,

$$
P\{\text { car } C \mid \text { host picks door } B\}=
$$

$\boldsymbol{P}\{$ car C and host picks door $B\}$
$\boldsymbol{P}\{$ host picks door $B\}$

PROBLEM 7.27

\square Therefore, you should switch when the host reveals the goat

PROBLEM 9.26

\square The inheritance can be invested entirely in Mac or in $U S S$ and we are given that

$$
P\{\text { invested in } M a c\}=0.8
$$

and so

$$
P\{\text { invested in } U S S\}=0.2
$$

\square Each year return on investment is normal with

$$
\begin{aligned}
& {\underset{\sim}{\text { Rac }}}^{\sim} \sim \mathscr{N}(\mathbf{1 4 \%}, 4 \%) \\
& {\underset{\sim}{U S S}}_{\boldsymbol{R}} \sim \mathscr{N}(\mathbf{1 2 \%}, \mathbf{3 \%})
\end{aligned}
$$

and the yearly returns are independent r.v.s

[^0]
PROBLEMS 9.26 (a)

\square We compute then

$$
\begin{aligned}
& P\{.06<\underset{\sim}{\boldsymbol{R}}<. .18 \mid \text { investment in Mac }\} \\
& =P\left\{\frac{.06-.14}{.04}<\underset{\sim}{\boldsymbol{Z}}<\frac{.18-.14}{.04}\right\} \\
& =P\{-2<\underset{\sim}{Z}<1\} \\
& =0.8185
\end{aligned}
$$

PROBLEMS 9.26 (a)

\square Similarly

$$
\begin{aligned}
& P\{.06<\underset{\sim}{\boldsymbol{R}}<.18 \mid \text { investment in } \boldsymbol{U S S}\} \\
& =P\left\{\frac{6-12}{3}<\underset{\sim}{\boldsymbol{Z}}<\frac{\mathbf{1 8}-\mathbf{1 2}}{.3}\right\} \\
& =P\{-2<\underset{\sim}{\boldsymbol{Z}}<2\} \\
& =0.9544
\end{aligned}
$$

PROBLEM 9.26 (b)

Then, the unconditional probability is

$$
\begin{aligned}
P & \{6<\underset{\sim}{\boldsymbol{R}}<18\}=\boldsymbol{P}\{6<\underset{\sim}{\boldsymbol{R}}<\mathbf{1 8} \mid \text { Mac }\} \\
P & \{\text { Mac }\}+ \\
& P\{6<\underset{\sim}{\boldsymbol{R}}<\mathbf{1 8} \mid \boldsymbol{U S S}\} P\{\boldsymbol{U S S}\} \\
= & \mathbf{0 . 8 1 8 5 (0 . 8)}+\mathbf{0 . 9 5 4 4 (0 . 2)} \\
= & \mathbf{0 . 8 4 5 6 8}
\end{aligned}
$$

PROBLEM 9.26 (c)

\square We are given $P\{\underset{\sim}{\boldsymbol{R}}>12\}$ and wish to find $P\{$ investment in $\operatorname{Mac} \mid \underset{\sim}{\boldsymbol{R}}>\mathbf{1 2}\}$
\square We compute

$$
\begin{aligned}
P\{\underset{\sim}{R}>12 \mid M a c\}=P\left\{\underset{\sim}{Z}>\frac{12-14}{4}\right\} & =P\{\underset{\sim}{Z}>-0.5\} \\
& =0.6915
\end{aligned}
$$

and

$$
\begin{aligned}
P\{\underset{\sim}{R}>12 \mid U S S\}=P\left\{\underset{\sim}{Z}>\frac{12-12}{3}\right\} & =P\{\underset{\sim}{Z}>0\} \\
& =0.5
\end{aligned}
$$

PROBLEM 9.26 (c)

\square Then $P\{\operatorname{Mac} \mid \underset{\sim}{R}>12\}=$

$$
\frac{P\{\underset{\sim}{R}>12 \mid M a c\} P\{M a c\}}{P\{\underset{\sim}{R}>12 \mid M a c\} P\{M a c\}+P\{\underset{\sim}{R}>12 \mid \text { USS }\} P\{U S S\}}
$$

$$
=\frac{(0.6915)(0.8)}{(0.6915)(0.8)+(0.5)(0.2)}
$$

$$
=0.847
$$

PROBLEM 9.26 (d)

\square We are given that
\square Then,

$$
P\{M a c\}=P\{U S S\}=0.5
$$

$\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}}\}=\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{M a c}\} \boldsymbol{P}\{\boldsymbol{M a c}\}+\boldsymbol{E}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{U S S}\} \boldsymbol{P}\{\boldsymbol{U S S}\}$

$$
0.13=0.5\{0.14+0.12\}
$$

and
$\operatorname{var}\{\underset{\sim}{\boldsymbol{R}}\}=(\mathbf{0 . 5})^{2} \operatorname{var}\{\underset{\sim}{\boldsymbol{R}} \mid \operatorname{Mac}\}+(\mathbf{0 . 5})^{2} \operatorname{var}\{\underset{\sim}{\boldsymbol{R}} \mid \boldsymbol{U S S}\}$
$=0.25\left\{(0.04)^{2}+(0.03)^{2}\right\}$

PROBLEM 9.31 (a)

\square We know that the length r.v.

$$
\underset{\sim}{L} \sim \mathscr{N}(5.9,0.0365)
$$

\square We compute
$P\left\{\right.$ not fit in a $6^{\prime \prime}$ envelope $\}=P\{\underset{\sim}{L}>5.975\}$

$$
\begin{aligned}
& =P\left\{\underset{\sim}{Z}>\frac{5.975-5.9}{0.0365}\right\} \\
& =P\{\underset{\sim}{Z}>2.055\} \\
& =0.02
\end{aligned}
$$

PROBLEM 9.31 (b)

\square We have a box with $n=20$ and a failure occurs whenever an envelope does not fit into a box:

$$
P\{\text { no fit }\}=P\{\underset{\sim}{L}>5.975\}=0.02
$$

\square From the binomial distribution for $n=20$ with
$q=0.02$ we compute the $\boldsymbol{P}\{\mathbf{2}$ or more no fits \}
The event of two or more no fits in a population of 20 is the event of 18 or less fits

PROBLEM 9.31 (b)

$$
P\{\text { fit }\}=\mathbf{1 - P}\{\text { not fit }\}=\mathbf{0 . 9 8}
$$

$$
=1-0.94
$$

binomial ($20 ; 0.02$)
$=0.06$

PROBLEM 9.31 (b)

The interpretation of the .06 is as follows: we
have the result that we expect, on average, that
6% of the boxes contain 2 or more cards that do
not fit the envelopes

9.34

\square On average, 7.5 people arrive in 30 minutes since

$$
\frac{30 \mathrm{~min}}{4 \mathrm{~min} / \text { person }}=7.5 \text { persons }
$$

and so we have the number of arriving people $\underset{\sim}{X}$
as an r.v. with

$$
\underset{\sim}{X} \sim \operatorname{Poisson}(m=7.5)
$$

A simplistic way to solve the problem is to view the individual $\mathbf{4 0 \%}$ preference of each arriving

9.34

person to be independent of the arrivals and then
treat the number of arriving persons who prefer
the new recipe as a r.v. $\underset{\sim}{P}$ with mean (40%)(7.5) $=3$
and so

$$
\underset{\sim}{P} \sim \operatorname{Poisson}(m=3)
$$

Table look up produces

$$
P\{\underset{\sim}{P} \geq 4\}=0.353
$$

9.34

\square A more rigorous approach is to treat the performance of each arrival as a binomial
$\underset{\sim}{X}=$ number of arrivals in 30 minutes $\sim \operatorname{Poisson}(m=7.5)$
\square Each arrival i has a preference $\underset{\sim}{\boldsymbol{P}}$ for new recipe
with

$$
\underset{\sim}{\boldsymbol{P}}{\underset{i}{ }}^{\operatorname{binomial}(n=\underset{\sim}{X}, p=0.4)}
$$

9.34

\square We need to compute $P\left\{\sum_{i}{\underset{\sim}{\sim}}_{i} \geq 4\right\}$
\square We condition over the number of arrivals

$$
\begin{aligned}
& \boldsymbol{P}\left\{\sum_{i} \underset{\sim}{\boldsymbol{P}} \geq \mathbf{4}\right\}=\sum_{n=1}^{\infty} \boldsymbol{P}\left\{\sum_{i=1}^{n} \underset{\sim}{\boldsymbol{P}} \geq \mathbf{4} \mid \underset{\sim}{X} \geq n\right\} \boldsymbol{P}\{\underset{\sim}{X}=n\} \\
& =P\left\{\sum_{i=1}^{4}{\underset{\sim}{\sim}}_{i} \geq 4 \mid \underset{\sim}{X} \geq 4\right\} \boldsymbol{P}\{\underset{\sim}{X}=4\}+ \\
& \boldsymbol{P}\left\{\sum_{i=1}^{5}{\underset{\sim}{\sim}}_{\boldsymbol{P}} \geq 4 \mid \underset{\sim}{\boldsymbol{X}} \geq 5\right\} \boldsymbol{P}\{\underset{\sim}{\boldsymbol{X}}=5\}+ \\
& \boldsymbol{P}\left\{\sum_{i=1}^{\boldsymbol{6}} \underset{\sim}{\boldsymbol{P}} \geq \mathbf{4} \mid \underset{\sim}{X} \geq \mathbf{6}\right\} \boldsymbol{P}\{\underset{\underset{\sim}{X}=6}{\boldsymbol{X}}=\mathbf{6}\}+\ldots
\end{aligned}
$$

9.34

\square Note that $P\left\{\sum_{i=1}^{n} \underset{\sim}{\underset{\sim}{P}} \geq 4 \mid \underset{\sim}{x} \geq 4\right\} \boldsymbol{P}\{\underset{\sim}{X}=n\}$ is simply
the binomial distribution value with parameters
$(n, 0.4)$ and $P\{\underset{\sim}{X}=n\}$ is the Poisson distribution
value with $m=7.5$

The sum has insignificant contributions for $n>16$

12.7: OIL WILDCATTING PROBLEM: DECISION TREE

12.7: BLOCK DIAGRAMS

12.7 EVPI AND EVII

We evaluate the expected value of the clairvoyant information

$$
E V P I=\underbrace{E M V(\text { clairvoyant })}_{\$ 19 k}-\underbrace{E M V(\text { drill })}_{\$ 10 k}=\$ 9 k
$$

\square We have the following conditional probabilities

$$
P\{\text { "good" } \mid \text { oil }\}=0.95 \text { and } P\{\text { "poor" } \mid \text { dry }\}=0.85
$$

\square We are also given that

$$
P\{d r y\}=0.9 \text { and } P\{o i l\}=0.1
$$

[We can find P \{ "good" $\}$ and P \{"poor" $\}$ with the

12.7 EVPI AND EVII

law of total probability

$$
\begin{array}{r}
P\{\text { "good" }\}=P\{\text { "good"|oil }\} P\{o i l\}+ \\
P\{\text { "good" } \mid d r y\} P\{d r y\}= \\
(0.95)(0.1)+(0.15)(0.9)=0.23 \\
P\{\text { "poor" }\}=1-P\{\text { "good" }\}=1-0.23=0.77
\end{array}
$$

12.7 EVPI AND EVII

Now we can find

$$
\left.\begin{array}{rl}
P\{\text { oil } \mid \text { "good" }\} & \left.=\frac{P\left\{\text { good }^{\prime \prime} \mid \text { oil }\right\} P\{\text { oil }\}}{\left[\left.\begin{array}{l}
P\left\{" \text { good }^{\prime \prime} \mid \text { oil }\right\} P\{\text { oil }\}+ \\
P\left\{" \text { good }^{\prime \prime} \mid \text { dry }\right\}
\end{array} \right\rvert\,\right.}\right\} \\
& =\frac{(0.95)(0.1)}{(0.95)(0.1)+(0.15)(0.9)}
\end{array}\right]
$$

12.7 EVPI AND EVII

and

$$
\begin{aligned}
& =\frac{(0.05)(0.1)}{(0.05)(0.1)+(0.85)(0.9)} \\
& =0.0065
\end{aligned}
$$

10.12: PROBLEM FORMULATION

\square This is a multi-period planning problem with a 7month horizon

Define the following for use in backward regression

O stage: a month in the planning period
O state variable: the number of crankcases $\boldsymbol{S}_{\boldsymbol{n}}$
left over from the stage $(n-1), n=1,2, \ldots, N$
with $S_{7}=0$ (initial stage) and S_{0} unspecified
ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: PROBLEM FORMULATION

O decision variables: purchase amount $\boldsymbol{d}_{\boldsymbol{n}}$ for
stage $n, n=1,2, \ldots, 7$
O transition function: the relationship between the amount in inventory, purchase decision and demand in stages n and ($n-1$)

$$
S_{n-1}=S_{n}+d_{n}-D_{n} \quad n=1,2, \ldots, N
$$

where,

$$
D_{n}=\text { demand at stage } n \quad n=1,2, \ldots, N
$$

10.12: PROBLEM FORMULATION

O return function: costs of purchase in stage n plus the inventory holding costs, with the mathematical expression

$$
f_{n}^{*}\left(S_{n}\right)=C_{n}+\left(S_{n}+d_{n}-D_{n}\right)+\underbrace{f_{n-1}^{*}}_{\text {costs of lot size ordered }}\left(S_{n-1}\right)
$$

and

$$
f_{0}^{*}\left(S_{0}\right)=0
$$

10.12: STAGE 1 SOLUTION

$$
\begin{aligned}
D_{1} & =600 \\
f_{1}^{*}\left(S_{1}\right) & =\min _{d_{1}}\left\{C_{1}+\left(S_{1}+d_{1}-D_{1}\right) 0.50\right\}
\end{aligned}
$$

S_{1}	value of f_{1} for d_{1}				$f_{1}^{*}\left(S_{1}\right)$	\boldsymbol{d}_{1}^{*}
	0	500	1000	1500		
0			5200	7950	5200	1000
100		3000	5250	8000	3000	500
200		3050	5300	8050	3050	500
300		3100	5350	8100	3100	500
400		3150	5400	8150	3150	500
500		3200	5450	8200	3200	500
600	0	3250	5500	8250	0	0

10.12: STAGE 2 SOLUTION

$$
\begin{aligned}
D_{2} & =1200 \\
f_{2}^{*}\left(S_{2}\right) & =\min _{d_{2}}\left\{C_{2}+\left(S_{2}+d_{2}-D_{2}\right) 0.50+f_{1}^{*}\left(S_{2}+d_{2}-D_{2}\right)\right\}
\end{aligned}
$$

S_{2}	value of f_{2} for d_{2}				${ }^{*}\left(S_{2}\right)$	d_{2}^{*}
	0	500	1000	1500		
0				10750	10750	1500
100				10850	10850	1500
200			10200	10950	10200	1000
300			8050	7800	7800	1500
400			8150		8150	1000
500			8250		8250	1000
600			8350		8350	1000

10.12: STAGE 3 SOLUTION

$$
\begin{aligned}
D_{3} & =900 \\
f_{3}^{*}\left(S_{3}\right) & =\min _{d_{3}}\left\{C_{3}+\left(S_{3}+d_{3}-D_{3}\right) 0.50+f_{2}^{*}\left(S_{3}+d_{3}-D_{3}\right)\right\}
\end{aligned}
$$

S_{3}	value of f_{3} for d_{3}				$f_{3}^{*}\left(S_{3}\right)$	\boldsymbol{d}_{3}^{*}
	0	500	1000	1500		
0			15900	16150	1000	
100			15300		15300	1000
200			12950		12950	1000
300			12350		13350	1000
400		11050	13500		11050	500
500		13900	13650		13650	1000
600		13300			13300	500

10.12: STAGE 4 SOLUTION

$$
D_{4}=400
$$

$$
f_{4}^{*}\left(S_{4}\right)=\min _{d_{4}}\left\{C_{4}+\left(S_{4}+d_{4}-D_{4}\right) 0.50+f_{3}^{*}\left(S_{4}+d_{4}-D_{4}\right)\right\}
$$

S_{4}	value of f_{4} for d_{4}				${ }^{*}\left(s_{4}\right)$	d_{4}^{*}
	0	500	1000	1500		
0		18350	18600		16050	500
100		16050			16500	500
200		16500			14250	500
300		14250			15900	0
400	15900	16900			15350	0
500	15350	16600			13050	0
600	13050					

10.12: STAGE 5 SOLUTION

$$
D_{5}=800
$$

$$
f_{5}^{*}\left(S_{5}\right)=\min _{d_{5}}\left\{C_{5}+\left(S_{5}+d_{5}-D_{5}\right) 0.50+f_{4}^{*}\left(S_{5}+d_{5}-D_{5}\right)\right\}
$$

S_{5}	value of f_{5} for d_{5}				${ }_{5}^{*}\left(S_{5}\right)$	d_{5}^{*}
	0	500	1000	1500		
0			21600		1000	
100			19400		19400	1000
200			21100		21100	1000
300		21350	20600		20600	1000
400		19100	18350		18350	1000
500		19600			19600	500
600		17400			17400	500

10.12: STAGE 6 SOLUTION

$D_{6}=1100$

$f_{6}^{*}\left(S_{6}\right)=\min _{d_{6}}\left\{C_{6}+\left(S_{6}+d_{6}-D_{6}\right) 0.50+\boldsymbol{f}_{5}^{*}\left(S_{6}+d_{6}-D_{6}\right)\right\}$

S_{6}	value of f_{6} for d_{6}				${ }^{*}{ }_{6}^{*}\left(S_{6}\right)$	\boldsymbol{d}_{6}^{*}
	0	500	1000	1500		
0				26050	26050	100
100			26650	27350	26650	1000
200			24500	25200	24500	1000
300			26250		26250	1000
400			25800		25800	1000
500			21300		21300	1000
600		24600	20650		20650	1000

10.12: STAGE 7 SOLUTION

\square For stage $7, D_{7}=700$ and
$\boldsymbol{f}_{7}^{*}\left(\boldsymbol{S}_{7}\right)=\min _{\boldsymbol{d}_{7}}\left\{\boldsymbol{C}_{7}+\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-D_{7}\right) \mathbf{0 . 5 0}+\boldsymbol{f}_{6}^{*}\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-\boldsymbol{D}_{7}\right)\right\}$
\square Optimal total cost over 7 months = \$ 31,400
obtained using the purchasing policy below

month	1	2	3	4	5	6	7
amount of material	1000	1000	1000	0	1000	1500	500

10.14 (a): PROBLEM FORMULATION

The problem is a transportation problem which is a special case $L P$

$$
\min Z=\min \sum_{j=1}^{4} \sum_{i=1}^{6} c_{i j} x_{i j}
$$

s.t.

$$
\begin{aligned}
\sum_{i=1}^{6} x_{i j} & =1 \quad \forall j=1, \ldots, 4 \\
\sum_{i=1}^{6} \sum_{j=1}^{4} x_{i j} & =4 \\
x_{i j} & \in\{0,1\}
\end{aligned}
$$

10.14 (b): DP SOLUTION

\square Define the following:

O stage: car numbers $\boldsymbol{n}=\mathbf{1 , 2 , 3 , 4}$

O state variable \underline{s}_{n} : vector whose dimension is
the number of unassigned markets with each
component corresponding to the number of
the unassigned market

10.14 (b): DP SOLUTION

O decision variable: unassigned market d_{n}, a
component of \underline{s}_{n}, with $1 \leq d_{n} \leq 6, n=1, \ldots, 4$
O stage n costs: costs $\boldsymbol{r}_{\boldsymbol{n}}\left(\boldsymbol{d}_{\boldsymbol{n}}\right)$ of assigning the car \boldsymbol{n} to the market $\boldsymbol{d}_{\boldsymbol{n}}$

O return function: total costs at stage \boldsymbol{n}

$$
f_{n}^{*}\left(\underline{s}_{n}\right)=\min _{d_{n}}\left\{r_{n}\left(d_{n}\right)+f_{n-1}^{*}\left(\underline{s}_{n-1}\right)\right\}
$$

where

10.14 (b): DP SOLUTION

d_{n} is a component of \underline{s}_{n}
\underline{s}_{n-1} is the reduced vector obtained from \underline{s}_{n} by removing d_{n}

O objective:
$\min Z=\sum_{n=1}^{4} r_{n}\left(d_{n}\right), d_{n}$ is a component of $\underline{s}_{n}, n=1,4$
O transition relationship: \underline{s}_{n-1} is the reduced
vector obtained from \underline{s}_{n} by removing the component $\boldsymbol{d}_{\boldsymbol{n}}$

10.14 (b): STAGE 1 SOLUTION

\square In stage 1, we allocate car 1, having already
allocated 3 markets to the other $\mathbf{3}$ cars
\square Consequently, there are

$$
\frac{6!}{3!3!}=20
$$

possible states \underline{s}_{1} for which to make a decision

10.14 (b): STAGE 1 SOLUTION

state number	\underline{S}_{1}	value of f_{1} for decision d_{1}						d_{1}^{*}	f_{1}^{*}
		1	2	3	4	5	6		
1	[1,2,3]	7	12	9				1	7
2	[1,2,4]	7	12		15			1	7
3	[1,2,5]	7	12			8		1	7
4	[1,2,6]	7	12				14	1	7
5	[1,3,4]	7		9	15			1	7
6	[1,3,5]	7		9		8		1	7
7	[1,3,6]	7		9			14	1	7
8	[1,4,5]	7			15	8		1	7
9	[1,4,6]	7			15		14	1	7
10	[1,5,6]	7				8	14	1	7
11	[2,3,4]		12	9	15			3	9
12	[2,3,5]		12	9		8		5	8
13	[2,3,6]		12	9			14	3	9
14	[2,4,5]		12		15	8		5	8
15	[2,4,6]		12		15		14	2	12
16	[2,5,6]		12			8	14	5	8
17	[3,4,5]			9	15	8		5	8
18	[3,4,6]			9	15		14	3	8
19	[3,5,6]			9		8	14	5	9
20	[4,5,6]				15	8	14	5	8

10.14 (b): STAGE 2 SOLUTION

\square In stage 2, we assign car 2 having already assigned cars 4 and 3 to two of the six markets
\square The number of possible states \underline{s}_{2} is

$$
\frac{6!}{2!4!}=15
$$

\square For each state \underline{s}_{2}, we compute

$$
f_{2}^{*}\left(\underline{s}_{2}\right)=\min _{d_{2}}\left\{r_{2}\left(d_{2}\right)+f_{1}^{*}\left(\underline{s}_{1}\right)\right\},
$$

d_{2} is a component of \underline{s}_{2}
\underline{s}_{1} is the reduced vector not containing d_{2}

10.14 (b): STAGE 2 SOLUTION

state number	\underline{S}_{2}	value of f_{2} for decision d_{2}						d_{2}^{*}	f_{2}^{*}
		1	2	3	4	5	6		
1	[1, 2, 3, 4]	14	17	12	19			3	12
2	[1, 2, 3, 5]	13	17	12		13		3	12
3	[1, 2, 3, 6]	14	17	12			20	3	12
4	[1, 2, 4, 5]	13	17		19	13		1, 5	13
5	[1, 2, 4, 6]	17	17		19		20	1, 2	17
6	[1, 2, 5, 6]	13	17			13	20	1, 5	13
7	$[1,3,4,5]$	13		12	19	13		3	12
8	$[1,3,4,6]$	14		12	19		20	3	12
9	[1, 3, 5, 6]	13		12		13	20	3	12
10	$[1,4,5,6]$	13			19	13	20	1, 5	13
11	$[2,3,4,5]$		18	13	20	15		3	13
12	$[2,3,4,6]$		19	17	21		22	3	17
13	[2, 3, 5, 6]		18	13		15	21	3	13
14	$[2,4,5,6]$		18		20	18	21	2, 5	18
15	[3, 4, 5, 6]			13	20	15	21	3	13

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.14 (b): STAGE 3 SOLUTION

In stage 3, we assign car 3 having already assigned car 4 to one of the six markets

The number of possible states in stage 3 is

$$
\frac{6!}{5!1!}=6
$$

\square For each state $\underline{\underline{s}}_{3}$, we compute

$$
f_{3}^{*}\left(\underline{s}_{3}\right)=\min _{d_{3}}\left\{r_{3}\left(d_{3}\right)+f_{2}^{*}\left(\underline{s}_{2}\right)\right\},
$$

d_{3} is a component of \underline{s}_{3}
\underline{s}_{2} is the reduced vector not containing d_{3}

10.14 (b)

state number	$\underline{\boldsymbol{S}}_{3}$	value of f_{3} for decision d_{3}						d_{3}^{*}	f_{3}^{*}
		1	2	3	4	5	6		
1	[1, 2, 3, 4, 5]	21	22	20	28	19		5	19
2	[1, 2, 3, 4, 6]	25	22	24	28		2	2	22
3	$[1,2,3,5,6]$	21	22	30		19	24	5	19
4	$[1,2,4,5,6]$	26	23		29	24	25	2	23
5	$[1,3,4,5,6]$	21		20	28	19	24	5	19
6	$[2,3,4,5,6]$		23	25	29	24	25	2	23

10.14 (b): STAGE 4 SOLUTION

In stage 4, car 4 is assigned to the market with the lowest return for all markets
\square There is a single state $\underline{s}_{1}=[1,2,3,4,5,6]$ for which the optimal decision d_{4}^{*} is determined

S_{4}	value of f_{4} for decision d_{4}						d_{4}^{*}	f_{4}^{*}
	1	2	3	4	5	6		
[1, 2, 3, 4, 5, 6]	32	30	31	33	29	30	5	29

10.14 (b): THE OPTIMAL SOLUTION

car	market	cost
4	5	7
3	4	10
2	3	5
1	1	7
total costs		29

[^0]: ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

